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General framework

Field of study : finite groups
No classical groups or reductive algebraic groups here...

Goal : understanding how a group G acts on its p-subgroups (local
structure) and deriving global properties

Tools : characters and representations
- over C or a field of characteristic 0 (ordinary characters)
- over a field of positive caracteristic p (modular characters)

How to use them : Brauer theory
- characters of G can be gathered in p-blocks
- Brauer’s three main theorems connect p-blocks of G and p-blocks of
subgroups controlling the local structure of G
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Fusion : p-elements

Let G be a finite group, p a prime and S an Sp-subgroup in G .
Let x ∈ S , and denote by xG the set of G -conjugates of x .

In general, xS 6= xG ∩ S ; we have :

xG ∩ S = xS t xS
1 t . . . t xS

k .

This is fusion : two elements of S may be conjugate in G but not in S .
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Fusion : p-subgroups

Let G be a finite group, p a prime and S a p-Sylow in G .
Let P and Q be p-subgroups of S , and g ∈ G . Set Pg = g−1Pg

If Pg ⊆ Q, then g induces a morphism from P into Q :

ϕP,Q
g : x 7→ xg = g−1xg

Definition. Let H be a subgroup of G . We say that H controls p-fusion in
G if, for any such P, Q, g , there exists h ∈ H such that g and h induce
the same morphism :

ϕP,Q
g = ϕP,Q

h

Remark. This means that g = ch, with c ∈ CG (P) and h ∈ H.

Theorem (Alperin, 1967). H controls p-fusion in G if, and only if, H
contains an Sp-subgroup S of G and, for any p-subgroup P of S ,

NG (P) ⊂ CG (P).H
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Fusion : Frobenius category

Definition (Puig, 1976). Frobenius category Frobp(G ) of the group G

objects : p-subgroups of G

arrows : morphisms ϕP,Q
g : P → Q as defined earlier

Definition. H 6 G controls p-fusion in G if the inclusion map induces an
equivalence of the categories Frobp(H) and Frobp(G ).

Example. Let Op′(G ) be the maximal normal p′-subgroup in G . Then :

G = Op′(G ).H ⇒ H controls p-fusion in G

The converse is not always true, but...
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Two theorems about fusion

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S a
p-Sylow in G .

S controls p-fusion in G ⇒ G = Op′(G ).S

Theorem (Glauberman, 1966). Let G be a finite group, and x ∈ G an
element of order 2.

CG (x) controls 2-fusion in G ⇒ G = O2′(G ).CG (x)

⇒ x ∈ Z (G mod O2′(G ))

A sketch of the proofs will be given later.
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Characters

Let K be a field of characteristic 0.
An ordinary representation of G is an algebra morphism

ρ : KG → EndK(V ) with V a K-vector space.

The associated character of G is the central function

χ : KG → K, a 7→ tr(ρ(a))

If χ is an irreducible character, it defines an algebra morphism

θ : Z (KG )→ K, a 7→ χ(a)

χ(1)

Facts. Let χ be an irreducible character of G , and g ∈ G .

g ∈ kerχ ⇔ χ(g) = χ(1)

g ∈ Z (G mod kerχ) ⇔ ∃n ∈ N∗, χ(g)n = χ(1)n
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Frobenius theorem

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S an
Sp-subgroup in G . Suppose S controls p-fusion in G . Then :

G = Op′(G ).S

Lemma 1. If H is a subgroup of G and T an Sp-subgroup in H, then T
controls p-fusion in H.

With Alperin’s theorem, we have :

S controls fusion ⇔ ∀P 6 S , NG (P) 6 S .CG (P)
⇔ ∀P 6 S , NG (P)/CG (P) is a p-group.

Now, up to conjugation, we may suppose T 6 S . Then, for any P 6 T ,
NH(P)/CH(P) is (isomorphic to) a subgroup of NG (P)/CG (P), so is a p-group.

Lemma 2. If S 6= 1, then there exists a proper normal subgroup
H of G such that G = H.S .

This will prove the theorem : by induction, we have H = Op′(H).(S ∩ H).
Since Op′(H) 6 Op′(G ) ans G = H.S , we get G = Op′(G ).S .
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Frobenius theorem : proof of lemma 2

Lemma 2. If S 6= 1, then there exists a proper normal subgroup H of G
such that G = H.S .

Proof. H will appear as the kernel of a nontrivial character χ of G .

Let ϕ : S → C be a nontrivial linear character of S .
For g ∈ G , let gp denote its p-singular part.
Let x ∈ S be G -conjugate to gp, and set χ(g) = ϕ(x).

Remember that ϕ is a central function on S : it is constant on xS . Since S
controls fusion, g G

p ∩ S = xS , so ϕ(x) does not depend on the choice of x .

The central function χ is a linear character. For any g ∈ G , χ(g) = χ(gp).

The first part is proved using a theorem of Brauer (”characterisation of virtual
characters”), and the classical theory of ordinary characters.

Let H = kerχ. Then G/H is a p-group, so G = H.S .

Let g ∈ G map to a p′-element of G/H. Then gp ∈ H, so χ(g) = χ(gp) = 1.
This means g ∈ kerχ = H, so it maps to 1 in G/H.
Now G/H has no nontrivial p′-element : it is a p-group.
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Frobenius theorem : proof of lemma 2

Lemma 2. If S 6= 1, then there exists a proper normal subgroup H of G
such that G = H.S .

Proof. H will appear as the kernel of a nontrivial character χ of G .
Let ϕ : S → C be a nontrivial linear character of S .
For g ∈ G , let gp denote its p-singular part.
Let x ∈ S be G -conjugate to gp, and set χ(g) = ϕ(x).

Remember that ϕ is a central function on S : it is constant on xS . Since S
controls fusion, g G

p ∩ S = xS , so ϕ(x) does not depend on the choice of x .

The central function χ is a linear character. For any g ∈ G , χ(g) = χ(gp).

The first part is proved using a theorem of Brauer (”characterisation of virtual
characters”), and the classical theory of ordinary characters.

Let H = kerχ. Then G/H is a p-group, so G = H.S .

Let g ∈ G map to a p′-element of G/H. Then gp ∈ H, so χ(g) = χ(gp) = 1.
This means g ∈ kerχ = H, so it maps to 1 in G/H.
Now G/H has no nontrivial p′-element : it is a p-group.
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Brauer Blocks

Let G be a finite group and p a prime.
Denote by K a finite extension of Qp, O the ring of algebraic integers in
K , and k the residue field, of characteristic p.

K
(∑

G

)

OGG
?�

OO

����
k

(∑
G

)

Ordinary characters χ distribute among the p-blocks B.
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Principal block

Definition. Call ”principal block” the block B0(G ) which contains the
principal (trivial) character χ0.

Fact.
⋂

χ∈B0(G)

kerχ = Op′(G )

Fact. If G is a p-group, then it has only one block : the principal block.

Fact. If G/Op′(G ) is a p-group S (as in Frobenius theorem), then the
characters of the principal block of G are exactly those which factor
through S . More precisely, B0(G ) ' OS .
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Brauer theory

Brauer map. If P is a p-group in G and PCG (P) 6 H 6 NG (P), then a
block of B̂ of H can be lifted to a block B̂G of G .

Brauer’s third main theorem. Under this correspondance, only the principal
block of H maps to the principal block of G .

Brauer’s second main theorem. Let χ be a character of G belonging to the
block B, s a p-element in G , P = 〈s〉, and H = CG (s). If r ∈ CG (s) is a
p′-element, then :

χ(sr) =
∑

B̂G =B

∑
ϕ∈B̂

aϕϕ(sr)

where the aϕ are integers independant of r .

In particular, if B = B0(G ) and r ∈ Op′(H), then all ϕ belong to B0(H),
so that r ∈ kerϕ and :

χ(sr) =
∑

ϕ∈B0(H)

aϕϕ(s)

Very useful for computing characters !
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Glauberman’s theorem

Theorem (Glauberman, 1966). Let G be a finite group, and x ∈ G an
involution. Suppose CG (x) controls 2-fusion in G . Then

x ∈ Z (G mod O2′(G ))

Take a minimal counter-example. Let S be an S2-subgroup containing x .

Lemma 1. S also contains an involution y 6= x .

Lemma 2. Let χ be an irreducible character in the principal block of G .
For any g , h in G , χ(xgyh) = χ(xy).

Lemma 3. x ∈ Z (G mod kerχ) or χ(y) = 0 for any involution y 6= x in S .

Let Sx =
∑

x′∈xG x ′ ∈ Z (OG ). We get χ(SxSy ) = |xG |.|yG |.χ(xy).

Now θ : a 7→ χ(a)/χ(1) is an algebra morphism, so θ(SxSy ) = θ(Sx)θ(mSy ).

We get χ(xy)χ(1) = χ(x)χ(y). Replace y with xy : χ(y)χ(1) = χ(x)χ(xy).

This proves χ(y) = 0 or χ(x)2 = χ(1)2.

Since O2′(G ) =
⋂
χ∈B0(G) kerχ, this is very close to the conclusion...
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Glauberman’s theorem : proof of lemma 2

Lemma 2. Let χ be an irreducible character in the principal block of G .
For any g , h in G , χ(xgyh) = χ(xy).

Proof.

First consider the case where xg and yh commute.

CG (x) controls fusion so contains the 2-Sylow S . So x and y commute.
Now one proves that xgyh is conjugate to xy .

If they do not, D =
〈
xg , yh

〉
is a dihedral group of order 4n, n odd.

Let s be the central involution in D, and r such that xgyh = sr .

Let H = CG (s). Prove that r ∈ O2′(H). By Brauer’s theorems,

χ(xgyh) = χ(sr) =
∑

ϕ∈B0(H)

aϕϕ(sr) =
∑

ϕ∈B0(H)

aϕϕ(s) = χ(s)

There exists d ∈ D such that sxg = (yh)d . Now xg commutes with s, so it
commutes with yhd . As seen in the first case,

χ(s) = χ(xgyhd) = χ(xy)

This proves the lemma.
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commutes with yhd . As seen in the first case,

χ(s) = χ(xgyhd) = χ(xy)

This proves the lemma.
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Prospects

Z ∗p Theorem. For G a finite group, p a prime and x an element of order p,

CG (x) controls p-fusion in G ⇒ G = Op′(G ).CG (x)

This can be proved using the classification of finite simple groups.

An independent proof would be of great theoretical interest. It probably
requires deeper study of the principal block B0(G ).
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The end

This presentation can be found on my home page :

http://erwanbiland.fr/index.php?page=recherche

See also a wider presentation by Michel Broué :

http://www.math.jussieu.fr/~broue/GainesHist2007.pdf
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