Blocs de Brauer et structure locale des groupes finis Brauer blocks and local structure in finite groups

$\mathsf{Erwan}\ \mathsf{B}\mathtt{ILAND}$

Université Laval

Conférence Québec-Maine - samedi 2 octobre 2010

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Field of study : finite groups No classical groups or reductive algebraic groups here...

Goal : understanding how a group G acts on its p-subgroups (local structure) and deriving global properties

- Tools : characters and representations
- over $\mathbb C$ or a field of characteristic 0 (ordinary characters)
- over a field of positive caracteristic p (modular characters)

How to use them : Brauer theory

- characters of G can be gathered in p-blocks
- Brauer's three main theorems connect p-blocks of G and p-blocks of subgroups controlling the local structure of G

Let G be a finite group, p a prime and S an S_p -subgroup in G. Let $x \in S$, and denote by x^G the set of G-conjugates of x. Let G be a finite group, p a prime and S an S_p -subgroup in G. Let $x \in S$, and denote by x^G the set of G-conjugates of x.

In general, $x^S \neq x^G \cap S$; we have :

$$x^{\mathsf{G}} \cap \mathsf{S} = x^{\mathsf{S}} \sqcup x_1^{\mathsf{S}} \sqcup \ldots \sqcup x_k^{\mathsf{S}}.$$

This is fusion : two elements of S may be conjugate in G but not in S.

Let G be a finite group, p a prime and S a p-Sylow in G. Let P and Q be p-subgroups of S, and $g \in G$. Set $P^g = g^{-1}Pg$

Let G be a finite group, p a prime and S a p-Sylow in G. Let P and Q be p-subgroups of S, and $g \in G$. Set $P^g = g^{-1}Pg$

If $P^g \subseteq Q$, then g induces a morphism from P into Q :

$$\varphi_g^{P,Q}: x \mapsto x^g = g^{-1}xg$$

Let G be a finite group, p a prime and S a p-Sylow in G. Let P and Q be p-subgroups of S, and $g \in G$. Set $P^g = g^{-1}Pg$

If $P^g \subseteq Q$, then g induces a morphism from P into Q :

$$\varphi_g^{P,Q}: x \mapsto x^g = g^{-1}xg$$

Definition. Let *H* be a subgroup of *G*. We say that *H* controls *p*-fusion in *G* if, for any such *P*, *Q*, *g*, there exists $h \in H$ such that *g* and *h* induce the same morphism : P Q = P Q

$$\varphi_{g}^{P,Q} = \varphi_{h}^{P,Q}$$

Remark. This means that g = ch, with $c \in C_G(P)$ and $h \in H$.

Let G be a finite group, p a prime and S a p-Sylow in G. Let P and Q be p-subgroups of S, and $g \in G$. Set $P^g = g^{-1}Pg$

If $P^g \subseteq Q$, then g induces a morphism from P into Q :

$$\varphi_g^{P,Q}: x \mapsto x^g = g^{-1}xg$$

Definition. Let *H* be a subgroup of *G*. We say that *H* controls *p*-fusion in *G* if, for any such *P*, *Q*, *g*, there exists $h \in H$ such that *g* and *h* induce the same morphism :

$$\varphi_{g}^{P,Q} = \varphi_{h}^{P,Q}$$

Remark. This means that g = ch, with $c \in C_G(P)$ and $h \in H$.

Theorem (Alperin, 1967). *H* controls *p*-fusion in *G* if, and only if, *H* contains an S_p -subgroup *S* of *G* and, for any *p*-subgroup *P* of *S*,

 $N_G(P) \subset C_G(P).H$

• • = • • = • =

objects : *p*-subgroups of *G* arrows : morphisms $\varphi_g^{P,Q}: P \to Q$ as defined earlier

objects : *p*-subgroups of *G* arrows : morphisms $\varphi_g^{P,Q}: P \to Q$ as defined earlier

Definition. $H \leq G$ controls *p*-fusion in *G* if the inclusion map induces an equivalence of the categories $\mathcal{F}rob_p(H)$ and $\mathcal{F}rob_p(G)$.

objects : *p*-subgroups of *G*
arrows : morphisms
$$\varphi_g^{P,Q}: P \to Q$$
 as defined earlier

Definition. $H \leq G$ controls *p*-fusion in *G* if the inclusion map induces an equivalence of the categories $\mathcal{F}rob_p(H)$ and $\mathcal{F}rob_p(G)$.

Example. Let $O_{p'}(G)$ be the maximal normal p'-subgroup in G. Then :

$$G = O_{p'}(G).H \Rightarrow H \text{ controls } p \text{-fusion in } G$$

objects : *p*-subgroups of *G*
arrows : morphisms
$$\varphi_g^{P,Q}: P \to Q$$
 as defined earlier

Definition. $H \leq G$ controls *p*-fusion in *G* if the inclusion map induces an equivalence of the categories $\mathcal{F}rob_p(H)$ and $\mathcal{F}rob_p(G)$.

Example. Let $O_{p'}(G)$ be the maximal normal p'-subgroup in G. Then :

$$G = O_{p'}(G).H \Rightarrow H$$
 controls *p*-fusion in *G*

The converse is not always true, but...

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S a p-Sylow in G.

S controls p-fusion in $G \Rightarrow G = O_{p'}(G).S$

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S a p-Sylow in G.

$$S$$
 controls p -fusion in $G \Rightarrow G = O_{p'}(G).S$

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an element of order 2.

$$C_G(x)$$
 controls 2-fusion in $G \Rightarrow G = O_{2'}(G).C_G(x)$
 $\Rightarrow x \in Z(G \mod O_{2'}(G))$

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S a p-Sylow in G.

S controls *p*-fusion in
$$G \Rightarrow G = O_{p'}(G).S$$

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an element of order 2.

$$C_G(x)$$
 controls 2-fusion in $G \Rightarrow G = O_{2'}(G).C_G(x)$
 $\Rightarrow x \in Z(G \mod O_{2'}(G))$

A sketch of the proofs will be given later.

Let \mathbb{K} be a field of characteristic 0.

An ordinary representation of G is an algebra morphism

 $\rho: \mathbb{K}G \to \operatorname{End}_{\mathbb{K}}(V)$ with V a \mathbb{K} -vector space.

э

Let \mathbb{K} be a field of characteristic 0.

An ordinary representation of G is an algebra morphism

 $\rho : \mathbb{K}G \to \operatorname{End}_{\mathbb{K}}(V)$ with V a \mathbb{K} -vector space.

The associated character of G is the central function

 $\chi: \mathbb{K}G \to \mathbb{K}, \ a \mapsto \mathsf{tr}(\rho(a))$

Let \mathbb{K} be a field of characteristic 0.

An ordinary representation of G is an algebra morphism

 $\rho: \mathbb{K}G \to \operatorname{End}_{\mathbb{K}}(V)$ with V a \mathbb{K} -vector space.

The associated character of G is the central function

$$\chi: \mathbb{K}G \to \mathbb{K}, \ a \mapsto tr(\rho(a))$$

If χ is an irreducible character, it defines an algebra morphism

$$heta: \mathsf{Z}(\mathbb{K}\mathsf{G})
ightarrow \mathbb{K}, \; \mathsf{a} \mapsto rac{\chi(\mathsf{a})}{\chi(1)}$$

Let \mathbb{K} be a field of characteristic 0.

An ordinary representation of G is an algebra morphism

 $\rho: \mathbb{K}G \to \operatorname{End}_{\mathbb{K}}(V)$ with V a \mathbb{K} -vector space.

The associated character of G is the central function

$$\chi: \mathbb{K}G \to \mathbb{K}, \ a \mapsto tr(\rho(a))$$

If χ is an irreducible character, it defines an algebra morphism

$$heta: \mathsf{Z}(\mathbb{K}\mathsf{G})
ightarrow \mathbb{K}, \ \mathsf{a} \mapsto rac{\chi(\mathsf{a})}{\chi(1)}$$

Facts. Let χ be an irreducible character of G, and $g \in G$.

$$g \in \ker \chi \quad \Leftrightarrow \quad \chi(g) = \chi(1)$$

 $g \in Z(G \mod \ker \chi) \quad \Leftrightarrow \quad \exists n \in \mathbb{N}^*, \ \chi(g)^n = \chi(1)^n$

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S an S_p -subgroup in G. Suppose S controls p-fusion in G. Then :

 $G = O_{p'}(G).S$

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S an S_p -subgroup in G. Suppose S controls p-fusion in G. Then :

 $G = O_{p'}(G).S$

Lemma 1. If H is a subgroup of G and T an S_p -subgroup in H, then T controls p-fusion in H.

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S an S_p -subgroup in G. Suppose S controls p-fusion in G. Then :

 $G = O_{p'}(G).S$

Lemma 1. If H is a subgroup of G and T an S_p -subgroup in H, then T controls p-fusion in H.

With Alperin's theorem, we have :

$$\begin{array}{lll} S \text{ controls fusion} & \Leftrightarrow & \forall P \leqslant S, \ N_G(P) \leqslant S.C_G(P) \\ & \Leftrightarrow & \forall P \leqslant S, \ N_G(P)/C_G(P) \text{ is a } p\text{-group.} \end{array}$$

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S an S_p -subgroup in G. Suppose S controls p-fusion in G. Then :

 $G=O_{p'}(G).S$

Lemma 1. If H is a subgroup of G and T an S_p -subgroup in H, then T controls p-fusion in H.

With Alperin's theorem, we have :

$$\begin{array}{lll} S \text{ controls fusion} & \Leftrightarrow & \forall P \leqslant S, \ N_G(P) \leqslant S.C_G(P) \\ & \Leftrightarrow & \forall P \leqslant S, \ N_G(P)/C_G(P) \text{ is a } p\text{-group.} \end{array}$$

Now, up to conjugation, we may suppose $T \leq S$. Then, for any $P \leq T$, $N_H(P)/C_H(P)$ is (isomorphic to) a subgroup of $N_G(P)/C_G(P)$, so is a *p*-group.

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S an S_p -subgroup in G. Suppose S controls p-fusion in G. Then :

 $G = O_{p'}(G).S$

Lemma 1. If H is a subgroup of G and T an S_p -subgroup in H, then T controls p-fusion in H.

With Alperin's theorem, we have : S controls fusion $\Leftrightarrow \forall P \leq S, N_G(P) \leq S.C_G(P)$ $\Leftrightarrow \forall P \leq S, N_G(P)/C_G(P)$ is a *p*-group. Now, up to conjugation, we may suppose $T \leq S$. Then, for any $P \leq T$, $N_H(P)/C_H(P)$ is (isomorphic to) a subgroup of $N_G(P)/C_G(P)$, so is a *p*-group.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

Theorem (Frobenius, 1905). Let G be a finite group, p a prime and S an S_p -subgroup in G. Suppose S controls p-fusion in G. Then :

 $G = O_{p'}(G).S$

Lemma 1. If H is a subgroup of G and T an S_p -subgroup in H, then T controls p-fusion in H.

With Alperin's theorem, we have : S controls fusion $\Leftrightarrow \forall P \leq S, N_G(P) \leq S.C_G(P)$ $\Leftrightarrow \forall P \leq S, N_G(P)/C_G(P)$ is a *p*-group. Now, up to conjugation, we may suppose $T \leq S$. Then, for any $P \leq T$, $N_H(P)/C_H(P)$ is (isomorphic to) a subgroup of $N_G(P)/C_G(P)$, so is a *p*-group.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

This will prove the theorem : by induction, we have $H = O_{p'}(H).(S \cap H)$. Since $O_{p'}(H) \leq O_{p'}(G)$ ans G = H.S, we get $G = O_{p'}(G).S$.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

Proof. H will appear as the kernel of a nontrivial character χ of *G*.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

Proof. *H* will appear as the kernel of a nontrivial character χ of *G*. Let $\varphi : S \to \mathbb{C}$ be a nontrivial linear character of *S*. For $g \in G$, let g_p denote its *p*-singular part. Let $x \in S$ be *G*-conjugate to g_p , and set $\chi(g) = \varphi(x)$.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

Proof. H will appear as the kernel of a nontrivial character χ of G. Let $\varphi : S \to \mathbb{C}$ be a nontrivial linear character of S. For $g \in G$, let g_p denote its p-singular part.

Let $x \in S$ be *G*-conjugate to g_p , and set $\chi(g) = \varphi(x)$.

Remember that φ is a central function on S: it is constant on x^S . Since S controls fusion, $g_p^G \cap S = x^S$, so $\varphi(x)$ does not depend on the choice of x.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

Proof. H will appear as the kernel of a nontrivial character χ of *G*. Let $\varphi : S \to \mathbb{C}$ be a nontrivial linear character of *S*. For $g \in G$, let g_p denote its *p*-singular part. Let $x \in S$ be *G*-conjugate to g_p , and set $\chi(g) = \varphi(x)$.

Remember that φ is a central function on S: it is constant on x^S . Since S controls fusion, $g_p^G \cap S = x^S$, so $\varphi(x)$ does not depend on the choice of x.

The central function χ is a linear character. For any $g \in G$, $\chi(g) = \chi(g_p)$.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

Proof. H will appear as the kernel of a nontrivial character χ of *G*. Let $\varphi : S \to \mathbb{C}$ be a nontrivial linear character of *S*. For $g \in G$, let g_p denote its *p*-singular part.

Let $x \in S$ be G-conjugate to g_p , and set $\chi(g) = \varphi(x)$.

Remember that φ is a central function on S: it is constant on x^S . Since S controls fusion, $g_p^G \cap S = x^S$, so $\varphi(x)$ does not depend on the choice of x.

The central function χ is a linear character. For any $g \in G$, $\chi(g) = \chi(g_p)$.

The first part is proved using a theorem of Brauer ("characterisation of virtual characters"), and the classical theory of ordinary characters.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

Proof. H will appear as the kernel of a nontrivial character χ of *G*. Let $\varphi : S \to \mathbb{C}$ be a nontrivial linear character of *S*. For $g \in G$, let g_p denote its *p*-singular part.

Let $x \in S$ be G-conjugate to g_p , and set $\chi(g) = \varphi(x)$.

Remember that φ is a central function on S: it is constant on x^S . Since S controls fusion, $g_p^G \cap S = x^S$, so $\varphi(x)$ does not depend on the choice of x.

The central function χ is a linear character. For any $g \in G$, $\chi(g) = \chi(g_p)$.

The first part is proved using a theorem of Brauer ("characterisation of virtual characters"), and the classical theory of ordinary characters.

Let $H = \ker \chi$. Then G/H is a *p*-group, so G = H.S.

Lemma 2. If $S \neq 1$, then there exists a proper normal subgroup H of G such that G = H.S.

Proof. H will appear as the kernel of a nontrivial character χ of *G*. Let $\varphi : S \to \mathbb{C}$ be a nontrivial linear character of *S*.

For $g \in G$, let g_p denote its *p*-singular part.

Let $x \in S$ be G-conjugate to g_p , and set $\chi(g) = \varphi(x)$.

Remember that φ is a central function on S: it is constant on x^S . Since S controls fusion, $g_p^G \cap S = x^S$, so $\varphi(x)$ does not depend on the choice of x.

The central function χ is a linear character. For any $g \in G$, $\chi(g) = \chi(g_p)$.

The first part is proved using a theorem of Brauer ("characterisation of virtual characters"), and the classical theory of ordinary characters.

Let
$$H = \ker \chi$$
. Then G/H is a *p*-group, so $G = H.S$.

Let $g \in G$ map to a p'-element of G/H. Then $g_p \in H$, so $\chi(g) = \chi(g_p) = 1$. This means $g \in \ker \chi = H$, so it maps to 1 in G/H. Now G/H has no nontrivial p'-element : it is a p-group.

イロト イポト イヨト イヨト

Let G be a finite group and p a prime.

Denote by \mathbb{K} a finite extension of \mathbb{Q}_p , \mathcal{O} the ring of algebraic integers in K, and k the residue field, of characteristic p.

Let G be a finite group and p a prime.

Denote by \mathbb{K} a finite extension of \mathbb{Q}_p , \mathcal{O} the ring of algebraic integers in K, and k the residue field, of characteristic p.

Let G be a finite group and p a prime. Denote by \mathbb{K} a finite extension of \mathbb{Q}_p , \mathcal{O} the ring of algebraic integers in K, and k the residue field, of characteristic p.

Let G be a finite group and p a prime.

Denote by \mathbb{K} a finite extension of \mathbb{Q}_p , \mathcal{O} the ring of algebraic integers in K, and k the residue field, of characteristic p.

$$\mathbb{K}G \simeq \bigoplus \mathbb{K}B \simeq \bigoplus_{B} \left(\bigoplus_{\chi \in B} C_{\chi} \right) \quad \text{(simple algebras)}$$

$$\bigcup_{\mathcal{O}G} \simeq \bigoplus B \quad \text{(indecomposable algebras)}$$

$$\downarrow_{KG} \simeq \bigoplus kB \quad \text{(indecomposable algebras)}$$

Let G be a finite group and p a prime.

Denote by \mathbb{K} a finite extension of \mathbb{Q}_p , \mathcal{O} the ring of algebraic integers in K, and k the residue field, of characteristic p.

$$\mathbb{K}G \simeq \bigoplus \mathbb{K}B \simeq \bigoplus_{B} \left(\bigoplus_{\chi \in B} C_{\chi} \right) \quad \text{(simple algebras)}$$

$$\overset{\bigcirc}{\mathcal{O}G} \simeq \bigoplus B \quad \text{(indecomposable algebras)}$$

$$\overset{\checkmark}{kG} \simeq \bigoplus kB \quad \text{(indecomposable algebras)}$$

Ordinary characters χ distribute among the *p*-blocks *B*.

B ▶ < B ▶

3

Fact.
$$\bigcap_{\chi \in B_0(G)} \ker \chi = O_{p'}(G)$$

B ▶ < B ▶

3

Fact.
$$\bigcap_{\chi \in B_0(G)} \ker \chi = O_{p'}(G)$$

Fact. If G is a p-group, then it has only one block : the principal block.

Fact.
$$\bigcap_{\chi \in B_0(G)} \ker \chi = O_{p'}(G)$$

Fact. If G is a p-group, then it has only one block : the principal block.

Fact. If $G/O_{p'}(G)$ is a *p*-group *S* (as in Frobenius theorem), then the characters of the principal block of *G* are exactly those which factor through *S*. More precisely, $B_0(G) \simeq OS$.

Brauer map. If P is a p-group in G and $PC_G(P) \leq H \leq N_G(P)$, then a block of \hat{B} of H can be lifted to a block \hat{B}^G of G.

Brauer map. If P is a p-group in G and $PC_G(P) \leq H \leq N_G(P)$, then a block of \hat{B} of H can be lifted to a block \hat{B}^G of G.

Brauer's third main theorem. Under this correspondance, only the principal block of H maps to the principal block of G.

Brauer map. If P is a p-group in G and $PC_G(P) \leq H \leq N_G(P)$, then a block of \hat{B} of H can be lifted to a block \hat{B}^G of G.

Brauer's third main theorem. Under this correspondance, only the principal block of H maps to the principal block of G.

Brauer's second main theorem. Let χ be a character of G belonging to the block B, s a p-element in G, $P = \langle s \rangle$, and $H = C_G(s)$. If $r \in C_G(s)$ is a p'-element, then : $\chi(sr) = \sum_{\hat{B}^G = B} \sum_{\varphi \in \hat{B}} a_{\varphi} \varphi(sr)$

where the a_{φ} are integers independent of r.

Brauer map. If P is a p-group in G and $PC_G(P) \leq H \leq N_G(P)$, then a block of \hat{B} of H can be lifted to a block \hat{B}^G of G.

Brauer's third main theorem. Under this correspondance, only the principal block of H maps to the principal block of G.

Brauer's second main theorem. Let χ be a character of G belonging to the block B, s a p-element in G, $P = \langle s \rangle$, and $H = C_G(s)$. If $r \in C_G(s)$ is a p'-element, then : $\chi(sr) = \sum_{\hat{B}^G = B} \sum_{\varphi \in \hat{B}} a_{\varphi} \varphi(sr)$

where the a_{φ} are integers independent of r.

In particular, if $B = B_0(G)$ and $r \in O_{p'}(H)$, then all φ belong to $B_0(H)$, so that $r \in \ker \varphi$ and :

$$\chi(sr) = \sum_{\varphi \in B_0(H)} a_{\varphi} \varphi(s)$$

Very useful for computing characters !

Erwan BILAND (Université Laval)

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an involution. Suppose $C_G(x)$ controls 2-fusion in G. Then

 $x \in Z(G \mod O_{2'}(G))$

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an involution. Suppose $C_G(x)$ controls 2-fusion in G. Then

 $x \in Z(G \mod O_{2'}(G))$

Take a minimal counter-example. Let S be an S_2 -subgroup containing x.

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an involution. Suppose $C_G(x)$ controls 2-fusion in G. Then

 $x \in Z(G \mod O_{2'}(G))$

Take a minimal counter-example. Let S be an S_2 -subgroup containing x.

Lemma 1. S also contains an involution $y \neq x$.

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an involution. Suppose $C_G(x)$ controls 2-fusion in G. Then

 $x \in Z(G \mod O_{2'}(G))$

Take a minimal counter-example. Let S be an S₂-subgroup containing x. Lemma 1. S also contains an involution $y \neq x$.

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an involution. Suppose $C_G(x)$ controls 2-fusion in G. Then

 $x \in Z(G \mod O_{2'}(G))$

Take a minimal counter-example. Let S be an S₂-subgroup containing x. Lemma 1. S also contains an involution $y \neq x$.

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Lemma 3. $x \in Z(G \mod \ker \chi)$ or $\chi(y) = 0$ for any involution $y \neq x$ in S.

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an involution. Suppose $C_G(x)$ controls 2-fusion in G. Then

 $x \in Z(G \mod O_{2'}(G))$

Take a minimal counter-example. Let S be an S₂-subgroup containing x. Lemma 1. S also contains an involution $y \neq x$.

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Lemma 3. $x \in Z(G \mod \ker \chi)$ or $\chi(y) = 0$ for any involution $y \neq x$ in S. Let $S_x = \sum_{x' \in x^G} x' \in Z(\mathcal{O}G)$. We get $\chi(S_xS_y) = |x^G|.|y^G|.\chi(xy)$. Now $\theta : a \mapsto \chi(a)/\chi(1)$ is an algebra morphism, so $\theta(S_xS_y) = \theta(S_x)\theta(mS_y)$. We get $\chi(xy)\chi(1) = \chi(x)\chi(y)$. Replace y with $xy : \chi(y)\chi(1) = \chi(x)\chi(xy)$. This proves $\chi(y) = 0$ or $\chi(x)^2 = \chi(1)^2$.

Theorem (Glauberman, 1966). Let G be a finite group, and $x \in G$ an involution. Suppose $C_G(x)$ controls 2-fusion in G. Then

 $x \in Z(G \mod O_{2'}(G))$

Take a minimal counter-example. Let S be an S₂-subgroup containing x. Lemma 1. S also contains an involution $y \neq x$.

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Lemma 3. $x \in Z(G \mod \ker \chi)$ or $\chi(y) = 0$ for any involution $y \neq x$ in S. Let $S_x = \sum_{x' \in x^G} x' \in Z(\mathcal{O}G)$. We get $\chi(S_xS_y) = |x^G|.|y^G|.\chi(xy)$. Now $\theta : a \mapsto \chi(a)/\chi(1)$ is an algebra morphism, so $\theta(S_xS_y) = \theta(S_x)\theta(mS_y)$. We get $\chi(xy)\chi(1) = \chi(x)\chi(y)$. Replace y with $xy : \chi(y)\chi(1) = \chi(x)\chi(xy)$. This proves $\chi(y) = 0$ or $\chi(x)^2 = \chi(1)^2$.

Since $O_{2'}(G) = \bigcap_{\chi \in B_0(G)} \ker \chi$, this is very close to the conclusion...

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Proof.

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Proof. First consider the case where x^g and y^h commute.

 $C_G(x)$ controls fusion so contains the 2-Sylow S. So x and y commute. Now one proves that $x^g y^h$ is conjugate to xy.

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Proof. First consider the case where x^g and y^h commute.

 $C_G(x)$ controls fusion so contains the 2-Sylow S. So x and y commute. Now one proves that $x^g y^h$ is conjugate to xy.

If they do not, $D = \langle x^g, y^h \rangle$ is a dihedral group of order 4n, n odd. Let s be the central involution in D, and r such that $x^g y^h = sr$.

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Proof. First consider the case where x^g and y^h commute.

 $C_G(x)$ controls fusion so contains the 2-Sylow S. So x and y commute. Now one proves that $x^g y^h$ is conjugate to xy.

If they do not, $D = \langle x^g, y^h \rangle$ is a dihedral group of order 4n, n odd. Let s be the central involution in D, and r such that $x^g y^h = sr$.

Let $H = C_G(s)$. Prove that $r \in O_{2'}(H)$. By Brauer's theorems,

$$\chi(x^{g}y^{h}) = \chi(sr) = \sum_{\varphi \in B_{0}(H)} a_{\varphi}\varphi(sr) = \sum_{\varphi \in B_{0}(H)} a_{\varphi}\varphi(s) = \chi(s)$$

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Proof. First consider the case where x^g and y^h commute.

 $C_G(x)$ controls fusion so contains the 2-Sylow S. So x and y commute. Now one proves that $x^g y^h$ is conjugate to xy.

If they do not, $D = \langle x^g, y^h \rangle$ is a dihedral group of order 4n, n odd. Let s be the central involution in D, and r such that $x^g y^h = sr$.

Let $H = C_G(s)$. Prove that $r \in O_{2'}(H)$. By Brauer's theorems,

$$\chi(x^{g}y^{h}) = \chi(sr) = \sum_{\varphi \in B_{0}(H)} a_{\varphi}\varphi(sr) = \sum_{\varphi \in B_{0}(H)} a_{\varphi}\varphi(s) = \chi(s)$$

There exists $d \in D$ such that $sx^g = (y^h)^d$. Now x^g commutes with s, so it commutes with y^{hd} . As seen in the first case,

$$\chi(s) = \chi(x^g y^{hd}) = \chi(xy)$$

Lemma 2. Let χ be an irreducible character in the principal block of G. For any g, h in G, $\chi(x^g y^h) = \chi(xy)$.

Proof. First consider the case where x^g and y^h commute.

 $C_G(x)$ controls fusion so contains the 2-Sylow S. So x and y commute. Now one proves that $x^g y^h$ is conjugate to xy.

If they do not, $D = \langle x^g, y^h \rangle$ is a dihedral group of order 4n, n odd. Let s be the central involution in D, and r such that $x^g y^h = sr$.

Let $H = C_G(s)$. Prove that $r \in O_{2'}(H)$. By Brauer's theorems,

$$\chi(x^{g}y^{h}) = \chi(sr) = \sum_{\varphi \in B_{0}(H)} a_{\varphi}\varphi(sr) = \sum_{\varphi \in B_{0}(H)} a_{\varphi}\varphi(s) = \chi(s)$$

There exists $d \in D$ such that $sx^g = (y^h)^d$. Now x^g commutes with s, so it commutes with y^{hd} . As seen in the first case,

$$\chi(s) = \chi(x^g y^{hd}) = \chi(xy)$$

This proves the lemma.

 Z_p^* Theorem. For G a finite group, p a prime and x an element of order p, $C_G(x)$ controls p-fusion in $G \Rightarrow G = O_{p'}(G).C_G(x)$

ヨト イヨト

3

 Z_p^* Theorem. For G a finite group, p a prime and x an element of order p, $C_G(x)$ controls p-fusion in $G \Rightarrow G = O_{p'}(G).C_G(x)$

This can be proved using the classification of finite simple groups.

An independent proof would be of great theoretical interest. It probably requires deeper study of the principal block $B_0(G)$.

This presentation can be found on my home page :

http://erwanbiland.fr/index.php?page=recherche

See also a wider presentation by Michel Broué :

http://www.math.jussieu.fr/~broue/GainesHist2007.pdf